Stress induced subcellular distribution of ALG-2, RBM22 and hSlu7.

نویسندگان

  • Aleksandra Janowicz
  • Marek Michalak
  • Joachim Krebs
چکیده

ALG-2 is a highly conserved calcium binding protein in the cytoplasm which belongs to the family of penta-EF hand proteins. Recently, we showed that ALG-2 is interacting with RBM22, a highly conserved spliceosomal nuclear protein (Montaville et al. Biochim. Biophys. Acta 1763, 1335, 2006; Krebs, Biochim. Biophys. Acta 1793, 979, 2009). In NIH 3T3 cells expressing both proteins a significant amount of ALG-2mRFP is translocated to the nucleus due to the interaction with RBM22-EGFP. hSlu7, another spliceosomal nuclear protein, known to interact with RBM22 in yeast, has been shown to translocate to the cytoplasm under cellular stress conditions. Here we provide evidence that the 2 spliceosomal proteins differ significantly in their subcellular distributions under stress conditions, and that RBM22 enhances the cytoplasmic translocation of hSlu7 under stress, especially a stress induced by thapsigargin. On the other hand, in NIH 3T3 cells expressing RBM22-EGFP and ALG-2-mRFP, ALG-2 remains translocated into the nucleus under both stress conditions, i.e. heat shock or treatment with thapsigargin. We could further demonstrate that these stress conditions had a different influence on the splicing pattern of XBP-1, a marker for the unfolded protein response indicating that ER stress may play a role in stress-induced translocation of spliceosomal proteins. The article is part of a Special Issue entitled: 11th European Symposium on Calcium.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22.

By yeast two-hybrid screening using the calcium-binding protein ALG-2 as bait a new target of ALG-2 was identified, the RNA-binding protein RBM22. In order to confirm these interactions in vivo we prepared fluorescent constructs by using the monomeric red fluorescent protein to label ALG-2 and the enhanced green fluorescent protein to label RBM22. Confocal microscopy of NIH 3T3 cells transfecte...

متن کامل

Stress alters the subcellular distribution of hSlu7 and thus modulates alternative splicing.

During pre-mRNA splicing, introns are removed and exons are ligated to form an mRNA. Exon choice is determined by different nuclear protein concentrations varying among tissues and cell types or by developmental stage. These can be altered by different cellular circumstances such as physiological stimuli, environmental effects and phosphorylation state. The splicing factor hSlu7 plays an import...

متن کامل

RNA-binding motif protein RBM22 is required for normal development of zebrafish embryos.

RBM22 is a newly discovered RNA-binding motif protein, belonging to the SLT11 family; it has been reported to be involved in pre-splicesome assembly and to interact with the Ca(2+) -signaling protein ALG-2. However, previous studies have not demonstrated whether its expression is essential for early embryogenesis in vertebrates. We utilized zebrafish as a developmental model to study the role o...

متن کامل

Splicing factor hSlu7 contains a unique functional domain required to retain the protein within the nucleus.

Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing >150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3' splice site. Here, we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 protein ...

متن کامل

Splicing Factor hSlu7 Contains a Unique Functional Domain Required to Retain the Protein within the Nucleus□D

Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing >150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3 splice site. Here, we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 protein t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1813 5  شماره 

صفحات  -

تاریخ انتشار 2011